A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
نویسندگان
چکیده
PURPOSE Cortical cataract in humans is associated with Ca2+ overload and protein loss, and although animal models of cataract have implicated Ca2+-activated proteases in this process, it remains to be determined whether the human lens responds in this manner to conditions of Ca2+ overload. The purpose of these experiments was to investigate Ca2+-induced opacification and proteolysis in the organ-cultured human lens. METHODS Donor human lenses were cultured in Eagle's minimum essential medium (EMEM) for up to 14 days. The Ca2+ ionophore ionomycin was used to induce a Ca2+ overload. Lenses were loaded with [3H]-amino acids for 48 hours. After a 24-hour control efflux period, lenses were cultured in control EMEM (Ca2+ 1.8 mM), EMEM + 5 microM ionomycin, or EMEM + 5 microM ionomycin + 5 mM EGTA (Ca2+ < 1 microM). Efflux of proteins and transparency were monitored daily. Protein distribution and cytoskeletal proteolysis were analyzed at the end of the experiment. Cytoskeletal proteins were isolated and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Western blot analyses were probed with anti-vimentin antibody (clone V9) and detected by enhanced chemiluminescence. RESULTS Lenses cultured under control conditions remained transparent for 14 days in EMEM with no added supplements or serum. The lenses synthesized proteins and had a low rate of protein efflux throughout the experimental period. Ionomycin treatment resulted in cortical opacification, which was inhibited when external Ca2+ was chelated with EGTA. Exposure to ionomycin also led to an efflux of [3H]-labeled protein, amounting to 41% of the labeled protein over the 7-day experimental period, compared with 12% in ionomycin + EGTA-treated lenses. Efflux was accounted for by loss from the lens soluble protein (crystallin) fraction. Western blot analysis of the cytoskeletal protein vimentin (56 kDa) revealed a distinct breakdown product of 48 kDa in ionomycin-treated lenses that was not present when Ca2+ was chelated with EGTA. In addition, high-molecular-weight proteins (approximately 115 kDa and 235 kDa) that cross-reacted with the vimentin antibody were observed in ionomycin-treated lenses. The Ca2+-induced changes were not age dependent. CONCLUSIONS Human lenses can be successfully maintained in vitro, remaining transparent for extended periods. Increased intracellular Ca2+ induces cortical opacification in the human lens. Ca2+-dependent cleavage and cross-linking of vimentin supports possible roles for calpain and transglutaminase in the opacification process. This human lens calcium-induced opacification (HLCO) model enables investigation of the molecular mechanisms of opacification, and the data help to explain the loss of protein observed in human cortical cataractous lenses in vivo.
منابع مشابه
A Human Lens Model of Cortical Cataract: Ca-Induced Protein Loss, Vimentin Cleavage and Opacification
PURPOSE. Cortical cataract in humans is associated with Ca overload and protein loss, and although animal models of cataract have implicated Ca-activated proteases in this process, it remains to be determined whether the human lens responds in this manner to conditions of Ca overload. The purpose of these experiments was to investigate Ca-induced opacification and proteolysis in the organ-cultu...
متن کاملMechanism of Src kinase induction of cortical cataract following exposure to stress: destabilization of cell-cell junctions.
PURPOSE Activation of stress pathways is a primary cause of age-related cataracts. Our laboratory previously developed a lens cataract model in which activation of the p38 kinase/Src family kinase (SFK) stress-signaling pathway is responsible for the induction of cortical opacities. Here, we use this model to investigate further the mechanism of stress-induced cataract. METHODS Cortical catar...
متن کاملThe intermediate filament protein, vimentin, in the lens is a target for cross-linking by transglutaminase.
Mere addition of Ca2+ to a lens cortical homogenate (bovine) generates a series of products composed of a variety of high molecular weight vimentin species. The Ca2+-induced cross-linking of this cytoskeletal element seems to be mediated by the intrinsic transglutaminase of lens, because the reaction could be blocked at the monomeric state of vimentin by the inclusion of small synthetic substra...
متن کاملDominant cataract formation in association with a vimentin assembly disrupting mutation.
Cataracts are characterized by an opacification of the eye lens, often caused by protein misfolding and aggregation. The intermediate filament protein vimentin, which is highly expressed in lens fiber cells and in mesenchymal tissues, is a main structural determinant in these cells forming a membrane-connected cytoskeleton. Additional functions of vimentin remain to be identified. Here, we demo...
متن کاملEffect of Aqueous Extract of Embelica officinalis on Selenite Induced Cataract in Rats
Cataract is clouding of the eye lens that reduces the amount of incoming light and results in deteriorating vision. Blindness is thought to reach 75 million by 2020. Of these, unoperated cataract may be expected to account for at least 35 million. Thus, the burden of cataract is increasing remorselessly. Embelica officinalis is reported to have a very good antioxidant property and thus we hypot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 41 8 شماره
صفحات -
تاریخ انتشار 2000